The Rhetorical Case	SDL Primer 00000	The Simulation Case	The Experimental Case	Conclusion

Integrating Disclosure Limitation into TSE

Alan F. Karr

National Institute of Statistical Sciences Research Triangle Park, NC 27709 USA

ITSEW 2013, Ames, IA, June 2, 2013

The Rhetorical Case	SDL Primer	The Simulation Case	The Experimental Case	Conclusion
•0				
Verbal Version				

Why Should Anyone Care?

Statistical disclosure limitation (SDL) is the one step in the survey process where error is *introduced deliberately*, for the sake of protecting respondent privacy and dataset confidentiality

To date, there is a disconnect

- SDL does not account for other sources of error, especially measurement error
- Efforts to reduce other sources of error do not account for SDL
- Efforts to unify edit, imputation and SDL are few

MY POINT: THIS NEEDS TO CHANGE

The Rhetorical Case ○●	SDL Primer 00000	The Simulation Case	The Experimental Case	Conclusion
Pictorial Version				

Where SDL Fits

The Rhetorical Case	SDL Primer ●○○○○	The Simulation Case	The Experimental Case	Conclusion
0				

High-Level View of SDL

The Rhetorical Case	SDL Primer	The Simulation Case	The Experimental Case	Conclusion
Two SDL Methods				

Additive Noise

Statistical approach Add noise *to data* prior to release, preserving low-dimensional structure but obscuring high-dimensional, confidentiality-threatening details

Computer science approach, aka differential privacy In a server setting, add noise *to query results*, with verifiable level of protection

The Rhetorical Case	SDL Primer	The Simulation Case	The Experimental Case	Conclusion
Two SDL Methods				

Microaggregation

Assume k-dimensional numerical data

- Group data into sets of size m (m = 3 is typical)
- 2 Replace elements of each *m*-tuplet by attribute-wise mean

The Rhetorical Case	SDL Primer ○○○●○	The Simulation Case	The Experimental Case	Conclusion
Two SDL Methods				

Combined Methods

No reason to use only one method!

Microaggregation (good for risk, not so good for utility) followed by addition of noise (with variance $\Sigma_{\mathcal{O}} - \Sigma_{\mathcal{M}_{microagg}}$) has been shown to be effective in several settings

- Income data (Oganian & Karr, 2006)
- Variance estimation for Horvitz–Thompson estimators using replicate weights (Hang & Karr, submitted)
- Post-SDL editing (later)

The Rhetorical Case	SDL Primer ○○○○●	The Simulation Case	The Experimental Case	Conclusion
Risk and Utility				

The Risk–Utility Frontier

Approach to Selecting from Candidate Releases Choose from risk-utility frontier

Challenges (Cox, Karr & Kinney, 2011)

- One person's risk is another person's utility
- Extant utility measures tend to be either too broad—hence too blunt, or too narrow—tied to specific analyses

SDL Primer

00

The Simulation Case

Choosing the Noise Distribution

Using the WSSM to Evaluate Additive Noise

Previous thinking: Noise distribution should be the *data* distribution. This is good for utility, but bad for risk, and led to strategy of microaggregation followed by additive noise.

WSSM shows that Noise distribution should be the *measurement* error distribution

SELECTED PARAMETERS Sample design: SRS WEB contact attempts: 1: CATI contact attempts: 2: CAPI contact attempts: 3 Numerical survey variable measurement error probability: 0.500 Categorical survey variable measurement error probability: 0.100 Numerical survey variable imputation method: HotDeck Categorical survey variable imputation method: HotDeck Numerical survey variable SDL method: AdditiveNoise(0.15) Categorical survey variable SDL method: Swap(0.05) Imputation of unit nonrespondents performed and reflected in H-T estimates COUNTS Population Sample WEB Resp CATI Resp CAPI Resp Total Resp Resp Rate 100000 5000 784 1448 1216 3448 0.690

The Rhetorical Case	SDL Primer	The Simulation Case	The Experimental Case	Conclusion
		00		
Choosing the Noise Distribution				

The Results

```
KULLBACK-LIEBLER DIVERGENCES
Sample to population: 0.003289
Unit respondents to population: 0.004686
Final responses to population: 0.016306
Released data to population: 0.016870
HELLINGER DISTANCES
Sample to population: 0.048487
Unit respondents to population: 0.076446
Final responses to population: 0.228078
Released data to population: 0.219950
DISCLOSURE RISK
Pre-SDL: 2078.222619
Post-SDL: 5.083333
```

The Rhetorical Case	SDL Primer	The Simulation Case	The Experimental Case	Conclusion
			• 00 000	
Setting				

SDL in the Presence of Edit Constraints

Problem SDL can create violations of edit constraints

General Strategies

- Post-SDL editing
 - *Not-so-good ways:* Delete edit violators (problem: weights); Project violators onto feasible region (problem: points on boundary)
 - *Better way:* Replace violators using Kim, *et al.* (2013) "imputation subject to [linear] edit constraints" methodology
- Edit-preserving SDL
 - *Not-so-good way:* Alter the method so that it does not produce violators (problem: introduces bias [additive noise], infeasible in finite time [swapping])
 - Better way: partially synthetic data

The Rhetorical Case	SDL Primer 00000	The Simulation Case	The Experimental Case ○●○○○○	Conclusion
Setting				

Setting—1

Dataset 1991 Colombian Annual Manufacturing Survey Data

- 6521 records
- 7 variables: RVA (real value added), CAP (capital), SKL (skilled labor), USL (unskilled labor), RMU (raw material), SKW (skilled labor wages), USW (unskilled labor wages)

The Experiment

- Range and ratio constraints on all variables, derived from the data
- 7 SDL methods: additive noise; rank swapping; microaggregation via PC; microaggregation via z-score; microaggregation via PC followed by additive noise; microaggregation via z-score followed by additive noise; partially synthetic data

Setting	
Setting—2	

- Disclosure risk: linkage of masked data to original data, using composite variables
- Data utility
 - Kullback-Liebler divergence between original and masked data, assuming normality
 - Regression of log(RVA) on other variables
- Constraint-preserving imputation using Kim, *et al.* (submitted): if constraint is violated, all variables involved are imputed. Method is heavily Bayesian and computationally demanding, using a hit-and-run sampler.

The Rhetorical Case	SDL Primer	The Simulation Case	The Experimental Case	Conclusion
			000000	
Doculto				

SDL-Generated Edit Violations

Masked variables are SL, USL and CAP

The Rhetorical Case	SDL Primer	The Simulation Case	The Experimental Case	Conclusion
Paculto				

Which Methods Cause Problems?

SDL Method	% Violations
Noise	2.45
Rank Swapping	2.09
Micp	0.08
Micz	0.11
Micp + Noise	1.31
Micz + Noise	1.29
Partially synthetic data	0.0

The Rhetorical Case	SDL Primer 00000	The Simulation Case	The Experimental Case ○○○○○●	Conclusion
Results				

Results

Risk

The Rhetorical Case	SDL Primer 00000	The Simulation Case	The Experimental Case	Conclusion

Final Points

Where Next?

- Full, *scalable* integration of edit, imputation and SDL: need sound models for measurement error
- Mixed categorical and numerical variables
- Error localization

Acknowledgements

- Co-authors: Hang Kim (NISS/Duke), Jerome Reiter (Duke)
- NSF support: SES–1131897, "Triangle Census Research Network"